Abstract
Statistical analyses commonly make use of models that suffer from loss of identifiability. In this paper, we address important issues related to the parameter estimation and hypothesis testing in models with loss of identifiability. That is, there are multiple parameter points corresponding to the same true model. We refer the set of these parameter points to as the set of true parameter values. We consider the case where the set of true parameter values is allowed to be very large or even infinite, some parameter values may lie on the boundary of the parameter space, and the data are not necessarily independently and identically distributed. Our results are applicable to a large class of estimators and their related testing statistics derived from optimizing an objective function such as a likelihood. We examine three specific examples: (i) a finite mixture logistic regression model; (ii) stationary ARMA processes; (iii) general quadratic approximation using Hellinger distance. The applications to these examples demonstrate the applicability of our results in a broad range of difficult statistical problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.