Abstract

We initiate the study of the asymptotic behavior of small solutions to one-dimensional Klein-Gordon equations with variable coefficient quadratic nonlinearities. The main discovery in this work is a striking resonant interaction between specific spatial frequencies of the variable coefficient and the temporal oscillations of the solutions. In the resonant case a novel type of modified scattering behavior occurs that exhibits a logarithmic slow-down of the decay rate along certain rays. In the non-resonant case we introduce a new variable coefficient quadratic normal form and establish sharp decay estimates and asymptotics in the presence of a critically dispersing constant coefficient cubic nonlinearity. The Klein-Gordon models considered in this paper are motivated by the study of the asymptotic stability of kink solutions to classical nonlinear scalar field equations on the real line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call