Abstract
In this paper we develop a neural network for the numerical simulation of time-dependent linear transport equations with diffusive scaling and uncertainties. The goal of the network is to resolve the computational challenges of curse-of-dimensionality and multiple scales of the problem. We first show that a standard Physics-Informed Neural Network (PINN) fails to capture the multiscale nature of the problem, hence justifies the need to use Asymptotic-Preserving Neural Networks (APNNs). We show that not all classical AP formulations are directly fit for the neural network approach. We construct a micro-macro decomposition based neural network, and also build in a mass conservation mechanism into the loss function, in order to capture the dynamic and multiscale nature of the solutions. Numerical examples are used to demonstrate the effectiveness of this APNNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.