Abstract
With the rapid advance of Machine Learning techniques and the deep increase of availability of scientific data, data-driven approaches have started to become progressively popular across science, causing a fundamental shift in the scientific method after proving to be powerful tools with a direct impact in many areas of society. Nevertheless, when attempting to analyze dynamics of complex multiscale systems, the usage of standard Deep Neural Networks (DNNs) and even standard Physics-Informed Neural Networks (PINNs) may lead to incorrect inferences and predictions, due to the presence of small scales leading to reduced or simplified models in the system that have to be applied consistently during the learning process. In this Chapter, we will address these issues in light of recent results obtained in the development of Asymptotic-Preserving Neural Networks (APNNs) for hyperbolic models with diffusive scaling. Several numerical tests show how APNNs provide considerably better results with respect to the different scales of the problem when compared with standard DNNs and PINNs, especially when analyzing scenarios in which only little and scattered information is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.