Abstract
High-energy completeness of quantum electrodynamics (QED) can be induced by an interacting ultraviolet fixed point of the renormalization flow. We provide evidence for the existence of two of such fixed points in the subspace spanned by the gauge coupling, the electron mass and the Pauli spin-field coupling. Renormalization group trajectories emanating from these fixed points correspond to asymptotically safe theories that are free from the Landau pole problem. We analyze the resulting universality classes defined by the fixed points, determine the corresponding critical exponents, study the resulting phase diagram, and quantify the stability of our results with respect to a systematic expansion scheme. We also compute high-energy complete flows towards the long-range physics. We observe the existence of a renormalization group trajectory that interconnects one of the interacting fixed points with the physical low-energy behavior of QED as measured in experiment. Within pure QED, we estimate the crossover from perturbative QED to the asymptotically safe fixed point regime to occur somewhat above the Planck scale but far below the scale of the Landau pole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.