Abstract
Given a Takagi–Sugeno (TS) system, this paper proposes a novel methodology to obtain the state feedback controller guaranteeing, asymptotically as a Polya-related complexity parameter grows, the largest (membership-shape independent) possible domain-of-attraction with contraction-rate performance λ, based on polyhedral λ-contractive sets from constrained linear systems literature. The resulting controller is valid for any realisation of the memberships, as usual in most TS literature. For a finite complexity parameter, an inner estimate of such largest set is obtained; the frontier of such approximation can be understood as the level set of a polyhedral control-Lyapunov function. Convergence of a proposed iterative algorithm is asymptotically necessary and sufficient for TS system stabilisation: for a high-enough value of the complexity parameter, any conceivable shape-independent Lyapunov controller design procedure will yield a proven domain of attraction smaller or equal to the algorithm's output.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have