Abstract
Sequential estimation continues observations until the observed sample satisfies a prescribed criterion. Its properties are superior on the average to those of nonsequential estimation in which the number of observations is fixed a priori. A higher-order asymptotic theory of sequential estimation is given in the framework of geometry of multidimensional curved exponential families. This gives a design principle of the second-order efficient sequential estimation procedure. It is also shown that a sequential estimation can be designed to have a covariance stabilizing effect at the same time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.