Abstract

We consider the question of asymptotic observables in cosmology. We assume that string theory contains a landscape of vacua, and that metastable de Sitter regions can decay to zero cosmological constant by bubble nucleation. The asymptotic properties of the corresponding bounce solution should be incorporated in a nonperturbative quantum theory of cosmology. A recent proposal for such a framework defines an S-matrix between the past and future boundaries of the bounce. We analyze in detail the properties of asymptotic states in this proposal, finding that generic small perturbations of the initial state cause a global crunch. We conclude that late-time amplitudes should be computed directly. This would require a string theory analogue of the no-boundary proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.