Abstract

Brane inflation is a specific realization of the inflationary universe scenario in the early universe within the brane world framework in string theory. The naturalness and robustness of this realistic scenario is explained. Its predictions on the cosmological observables in the cosmic microwave background radiation, especially possible distinct stringy features, such as large non-Gaussianity or large tensor mode that deviates from that predicted in the slow-roll scenario, are discussed. Stringy Kaluza–Klein (KK) modes as hidden dark matter is also a possibility. Another generic consequence of brane inflation is the production of cosmic strings towards the end of inflation. These cosmic strings are nothing but superstrings stretched to cosmological sizes. The properties of these cosmic superstrings and their subsequent cosmological evolution into a scaling network open up their possible detections in the near future, via cosmological, astronomical and/or gravitational wave measurements. At the moment, cosmological data are already imposing strong constraints on the details of the scenario. Finding distinctive stringy signatures in cosmological observations will go a long way in revealing the specific brane inflationary scenario and validating string theory as well as the brane world picture. Precision measurements may even reveal the structures of the flux compactification. Irrespective of the final outcome, we see that string theory is confronting data and making predictions.KeywordsCosmic Microwave Background RadiationOpen StringCosmic StringString ScaleCosmic Microwave Background Radiation DataThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.