Abstract

Dynamics of viscous shocks is considered in the modular Burgers equation, where the time evolution becomes complicated due to singularities produced by the modular nonlinearity. We prove that the viscous shocks are asymptotically stable under odd and general perturbations. For the odd perturbations, the proof relies on the reduction of the modular Burgers equation to a linear diffusion equation on a half-line. For the general perturbations, the proof is developed by converting the time-evolution problem to a system of linear equations coupled with a nonlinear equation for the interface position. Exponential weights in space are imposed on the initial data of general perturbations in order to gain the asymptotic decay of perturbations in time. We give numerical illustrations of asymptotic stability of the viscous shocks under general perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.