Abstract

ABSTRACT The main concern of this paper is to investigate the asymptotic stability of stationary solution to the compressible Navier–Stokes–Poisson equations with the classical Boltzmann relation in a half line. We first show the unique existence of stationary solution with the aid of the stable manifold theory, and then prove that the stationary solution is time asymptotically stable under the small initial perturbation by the elementary energy method. Finally, we discuss the convergence rate of the time-dependent solution towards the stationary solution, and give a new condition to ensure an algebraic decay or an exponential decay. The proof is based on a time and space weighted energy method by fully utilizing the self-consistent Poisson equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.