Abstract

This paper analyses an asymptotic stability of a digitally redesigned control system when the states of the analogue and the digital control systems are approximately matched at every sampling point. The digital redesign is a simple method of converting a given analogue controller to an equivalent digital controller in the sense of state-matching. The concerned state-matching technique is to minimise the norm distance between the discretised closed-loop system matrix of linear analogue control system and that of linear digital control system. It is shown that (i) there exists an upper bound of the norm distance to guarantee the asymptotic stability of the digitally redesigned control system and (ii) the trajectories of the linear analogue and the linear digital control systems coincide at every sampling point if the norm distance is zero. Also, a robustness result is provided in the case that nonlinear perturbations occur in the analogue and the digital control systems. Moreover, design conditions for the developed stability analysis are proposed in terms of linear matrix inequalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.