Abstract
Periodically stationary times series are useful to model physical systems whose mean behavior and covariance structure varies with the season. The Periodic Auto-Regressive Moving Average (PARMA) process provides a powerful tool for modelling periodically stationary series. Since the process is non-stationary, the innovations algorithm is useful to obtain parameter estimates. Fitting a PARMA model to high-resolution data, such as weekly or daily time series, is problematic because of the large number of parameters. To obtain a more parsimonious model, the discrete Fourier transform (DFT) can be used to represent the model parameters. This article proves asymptotic results for the DFT coefficients, which allow identification of the statistically significant frequencies to be included in the PARMA model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.