Abstract
We have previously proposed a novel order statistics correlation coefficient (OSCC), which possesses some desirable advantages when measuring linear and monotone nonlinear associations between two signals. However, the understanding of this new coefficient is far from complete. A lot of theoretical questions, such as the expressions of its distribution and moments, remain to be addressed. Motivated by this unsatisfactory situation, in this paper we prove that for samples drawn from bivariate normal populations, the distribution of OSCC is asymptotically equivalent to that of the Pearson's product moment correlation coefficient (PPMCC). We also reveal its close relationships with the other two coefficients, namely, Gini correlation (GC) and Spearman's rho (SR). Monte Carlo simulation results agree with the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.