Abstract
This paper derives the asymptotic analytical forms of the mean and variance of the Gini correlation (GC) with respect to samples drawn from bivariate normal populations. The asymptotic relative efficiency (ARE) of the Gini correlation to Pearson's product moment correlation coefficient (PPMCC) is investigated under the normal assumptions. To gain further insight into GC, we also compare the Gini correlation to other two closely related correlation coefficients, namely, the order statistics correlation coefficient (OSCC) and Spearman's rho (SR). Theoretical and simulation results suggest that the performance of GC lies in between those of OSCC and SR when estimating the correlation coefficient of the bivariate normal population. The newly found theoretical results along with other desirable properties enable GC to be a useful alternative to the existing coefficients, especially when one wants to make a trade-off between the efficiency and robustness to monotone nonlinearity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.