Abstract
We study the asymptotic behavior of one-step M-estimators based on not necessarily independent identically distributed observations. In particular, we find conditions for asymptotic normality of these estimators. Asymptotic normality of one-step M-estimators is proven under a wide spectrum of constraints on the exactness of initial estimators. We discuss the question of minimal restrictions on the exactness of initial estimators. We also discuss the asymptotic behavior of the solution to an M-equation closest to the parameter under consideration. As an application, we consider some examples of one-step approximation of quasi-likelihood estimators in nonlinear regression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have