Abstract
When additive models with more than two covariates are fitted with the backfitting algorithm proposed by Buja et al. [2], the lack of explicit expressions for the estimators makes study of their theoretical properties cumbersome. Recursion provides a convenient way to extend existing theoretical results for bivariate additive models to models of arbitrary dimension. In the case of local polynomial regression smoothers, recursive asymptotic bias and variance expressions for the backfitting estimators are derived. The estimators are shown to achieve the same rate of convergence as those of univariate local polynomial regression. In the case of independence between the covariates, non-recursive bias and variance expressions, as well as the asymptotically optimal values for the bandwidth parameters, are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.