Abstract
We study the distribution of harmonic measure on connected Julia sets of unicritical polynomials. Harmonic measure on a full compact set in ℂ is always concentrated on a set which is porous for a positive density of scales. We prove that there is a topologically generic set \(\mathcal{A}\) in the boundary of the Mandelbrot set such that for every \(c\in \mathcal{A}\), β>0, and λ∈(0,1), the corresponding Julia set is a full compact set with harmonic measure concentrated on a set which is not β-porous in scale λn for n from a set with positive density amongst natural numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.