Abstract

This article investigates the criterion of minimizing total k-power completion time (TKCT) in flow shop and open shop scheduling. For these NP-hard problems, the asymptotic optimality of the shortest processing time-based algorithms is proven for a sufficiently large problem scale. To numerically evaluate the convergence of the algorithms, new lower bounds with performance guarantees are presented for the flow shop TKCT problem. Computational results demonstrate the performance of the proposed algorithms and the effectiveness of the nonlinear objective. In addition, theoretical results on the single-machine TKCT problem are obtained for mathematical deduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.