Abstract
This study covers the review of algorithms developed for the optimum design of steel skeletal structures from the first article published in 1960 until to date. The paper initially describes the mathematical formulation of a simple truss structural design problem. The early optimum design algorithms that were based on mathematical programming techniques where the design variables are assumed to be continuous are reviewed. The optimum design of steel framed structures necessitates the selection of steel profiles from the standard list of discrete steel sections and requires the satisfaction of design code provisions. Both mathematical programming and optimality criteria techniques need more capability to produce solution to this type of optimum design problems. Soft computing techniques emerged recently provide solution directly without needing any approximation. These techniques are classified and reviewed and their use in obtaining the optimum solution of actual industrial steel design applications is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.