Abstract

The method of matched asymptotic expansions is used to explain bow the triple deck structure in a boundary layer can be formed. In the context of a laminar steady flow of an incompressible fluid over a flat plate, a theory is developed to explain the separation over significant wall disturbances. In particular, we show that the triple deck structure is the first perturbation that can both displace the classical boundary layer and cause separation of the flow. Above this exist a serie of perturbations, smaller but “stronger”, that cause a separation of the boundary layer without displacing it. This serie is limited by the smallest perturbation compatible with the hypothesis of the theory, thus leading to a theory in double deck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.