Abstract

The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and multiplicative (parametric) excitation of wide-band random process is studied. First, the multi-time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into ordinary quasi linear system. Then, the averaged Ito stochastic differential equations are derived by using the stochastic averaging method for quasi linear systems and the expression for the largest Lyapunov exponent of the linearized averaged Ito equations is derived. Finally, the necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent to be negative. An example is worked out in detail to illustrate the application and validity of the proposed procedure and to show the effect of the time delay in feedback control on the largest Lyapunov exponent and the stability of system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.