Abstract

The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and nonresonant Hamiltonian systems with time-delayed feedback control subject to multiplicative (parametric) excitation of Gaussian white noise is studied. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into ordinary quasi-integrable and nonresonant Hamiltonian system. Then, the averaged Itô stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems and the expression for the largest Lyapunov exponent of the linearized averaged Itô equations is derived. Finally, the necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent to be negative. An example is worked out in detail to illustrate the above mentioned procedure and its validity and to show the effect of the time delay in feedback control on the largest Lyapunov exponent and the stability of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.