Abstract
The asymptotic log-Harnack inequality is established for several kinds of models on stochastic differential systems with infinite memory: non-degenerate SDEs, neutral SDEs, semi-linear SPDEs, and stochastic Hamiltonian systems. As applications, the following properties are derived for the associated segment Markov semigroups: asymptotic heat kernel estimate, uniqueness of the invariant probability measure, asymptotic gradient estimate (hence, asymptotically strong Feller property), as well as asymptotic irreducibility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have