Abstract

We consider d-dimensional lattice path models restricted to the first orthant whose defining step sets exhibit reflective symmetry across every axis. Given such a model, we provide explicit asymptotic enumerative formulas for the number of walks of a fixed length: the exponential growth is given by the number of distinct steps a model can take, while the sub-exponential growth depends only on the dimension of the underlying lattice and the number of steps moving forward in each coordinate. The generating function of each model is first expressed as the diagonal of a multivariate rational function, then asymptotic expressions are derived by analyzing the singular variety of this rational function. Additionally, we show how to compute subdominant growth, reflect on the difference between rational diagonals and differential equations as data structures for D-finite functions, and show how to determine first order asymptotics for the subset of walks that start and end at the origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.