Abstract
Thermoelectric composites are promising for high efficiency energy conversion between thermal flows and electric conduction, though their effective behaviors remain poorly understood due to nonlinear thermoelectric coupling. In this paper, we develop an asymptotic homogenization theory to analyze the effective behavior of three-dimensional (3D) thermoelectric composites, built on the observation that the equations governing microscopic field fluctuations in the composite are actually linear instead of nonlinear after separation of length scales. A set of solutions similar to Green's function method are used to construct the unit cell problem, and appropriate interfacial continuity conditions and boundary conditions are derived. The homogenized governing equations are then developed for thermoelectric composites, and they are further reduced for a special case wherein the heat flow and electric conduction in the composite remains one-dimensional (1D) at macroscopic scale, even though the composite itself is 3D in general. The general homogenization theory is implemented using finite element method, and a key constant in the constructed solutions is determined using the reformulated eigenvalue problem. The algorithm is validated, and is applied for a number of case studies for the effective behavior of thermoelectric composites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have