Abstract

A micropolar-based asymptotic homogenization approach for the analysis of composite materials with periodic microstructure is proposed. The upscaling relations, conceived to determine the macro-descriptors (macro displacement and the micropolar rotation fields) as a function of the micro displacement field, are consistently derived in the asymptotic framework. In particular, the micropolar rotation field is expressed in terms of the microscopical infinitesimal rotation tensor and perturbation functions. The micro displacement field is, in turn, obtained by choosing a third order approximation of the asymptotic expansion, in which the macroscopic fields are expressed as a third order polynomial expansion. It follows that the macro descriptors are directly related to both perturbation functions and micropolar two-dimensional deformation modes. Furthermore, a properly conceived energy equivalence between the macroscopic point and a microscopic representative portion of the periodic composite material is introduced to derive the consistent overall micropolar constitutive tensors. It is pointed out that these constitutive tensors are not affected by the choice of the periodic cell. Moreover, in the case of vanishing microstructure the internal-length-scale-dependent constitutive tensors tend to zero, as expected. Finally, the capabilities of the proposed approach are shown through some illustrative examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.