Abstract

A theory of confluent hypergeometric functions is developed, based upon the methods described in the first three papers (I, II and III) of this series for replacing the divergent parts of asymptotic expansions by easily calculable series involving one or other of the four ‘ basic converging factors ’ which were investigated and tabulated in I. This theory is then illustrated by application to the special cases of exponential-type integrals, parabolic cylinder functions, modified Bessel functions, and ordinary Bessel functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call