Abstract

In this paper, we study the Wasserstein gradient flow structure of the porous medium equation restricted to q-Gaussians. The JKO-formulation of the porous medium equation gives a variational functional Kh, which is the sum of the (scaled-) Wasserstein distance and the internal energy, for a time step h. We prove that, for the case of q-Gaussians on the real line, Kh is asymptotically equivalent, in the sense of G-convergence as h tends to zero, to a rate-large-deviation-like functional. The result explains why the Wasserstein metric as well as the combination of it with the internal energy play an important role. Keywords: Gamma-convergence; porous medium equation; variational methods; Wasserstein gradient flow

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.