Abstract

In this work, we investigate the analysis of generators for dynamic graphs, which are defined as graphs whose topology changes over time. We focus on generated graphs whose order (number of nodes) varies over time. We use a concept called “sustainability” to qualify the long-term evolution of dynamic graphs. A dynamic graph is considered sustainable if its evolution does not result in a static, empty, or periodic graph. To illustrate how the analysis can be conducted, a parameterized and probability-based generator, named D3G3 (Degree-Driven Dynamic Geometric Graphs Generator), has been introduced in a recent work. From this model, we derive multiple scenarios that correspond to three trends in graph order evolution. Our central contribution lies in a mathematical framework that provides an expectation of the order of the graph at time step t+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t+1$$\\end{document}, given its order at time step t. Nevertheless, our analysis underscores the challenge of characterizing the sustainability of dynamic graphs, even when a formal mathematical model for graph order evolution is known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.