Abstract
This paper deals with the distribution of the LR statistic for testing the hypothesis that the smallest eigenvalues of a covariance matrix are equal. We derive an asymptotic null distribution of the LR statistic when the dimension p and the sample size N approach infinity, while the ratio p / N converging on a finite nonzero limit c ∈ ( 0 , 1 ) . Numerical simulations revealed that our approximation is more accurate than the classical chi-square-type approximation as p increases in value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.