Abstract
Ridge Regression techniques have been found useful to reduce mean square errors of parameter estimates when multicollinearity is present. But the usefulness of the method rest not only upon its ability to produce good parameter estimates, with smaller mean squared error than Ordinary Least Squares, but also on having reasonable inferential procedures. The aim of this paper is to develop asymptotic confidence intervals for the model parameters based on Ridge Regression estimates and the Edgeworth expansion. Some simulation experiments are carried out to compare these confidence intervals with those obtained from the application of Ordinary Least Squares. Also, an example will be provided based on the well known data set of Hald.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.