Abstract
The objective of a direct marketing scoring model is to pick a specified number of people to receive a particular offer so that the response to the mailing is maximized. This paper shows how ridge regression can be used to improve the performance of direct marketing scoring models. It reviews the key property of ridge regression—it can produce estimates of the slope coefficients having smaller mean squared error than ordinary least squares models. Next, it shows that ridge regression can be used to reduce the effective number of parameters in a regression model. Thus, ridge regression can be used as an alternative to variable subset selection methods such as stepwise regression to control the bias-variance tradeoff of the estimated values. This means that direct marketers can include more variables in a scoring model without danger of overfitting the data. Ridge regression estimates are compared with stepwise regression on direct marketing data. The empirical results suggest that ridge regression provides a more stable way of moderating the model degrees of freedom than dropping variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.