Abstract

The Ginzburg–Landau-type complex equations are simplified mathematical models for various pattern formation systems in mechanics, physics and chemistry. In this paper, we consider the complex Ginzburg–Landau (CGL) equations on the whole real line perturbed by an additive spacetime white noise. Our main result shows that it generates an asymptotically compact stochastic or random dynamical system. This is a crucial property for the existence of a stochastic attractor for such CGL equations. We rely on suitable spaces with weights, due to the regularity properties of spacetime white noise, which gives rise to solutions that are unbounded in space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.