Abstract

This paper is concerned with a Lotka-Volterra cooperation-diffusion model with a saturating interaction term for one species. The goal of the paper is to investigate the asymptotic behavior of the time- dependent solution in relation to the corresponding steady-state solutions under homogeneous Neumann boundary condition. Some simple and easily verifiable conditions are given to the rate constants so that for every nontrivial nonnegative initial function the corresponding time-dependent solution converges to one of the nonnegative constant steady-state solutions as time tends to infinity. This convergence result leads to the existence and uniqueness of a positive (or nonnegative) steady-state solution and the global asymptotic stability of a given nonnegative constant steady-state solution. In terms of ecological dynamics, it also gives some coexistence, permanence and extinction results for the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.