Abstract

In this paper, we present a detailed asymptotic analysis of the lattice Boltzmann method with two different collision mechanisms of BGK-type on the D2Q9-lattice for generalized Newtonian fluids. Unlike that based on the Chapman--Enskog expansion leading to the compressible Navier--Stokes equations, our analysis gives the incompressible ones directly and exposes certain important features of the lattice Boltzmann solutions. Moreover, our analysis provides a theoretical basis for using the iteration to compute the rate-of-strain tensor, which makes sense especially for generalized Newtonian fluids. As a by-product, a seemingly new structural condition on the generalized Newtonian fluids is singled out. This condition reads as “the magnitude of the stress tensor increases with increasing the shear rate.” We verify this condition for all the existing constitutive relations which are known to us. In addition, it is straightforward to extend our analysis to multiple-relaxation-time models or to three-dimensional lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.