Abstract
The nonlinear problem of non-stationary heat conductivity of the layered anisotropic heat-sensitive shells was formulated taking into account the linear dependence of thermal-physical characteristics of the materials of phase compositions on the temperature. The initial-boundary-value problem is formulated in the dimensionless form, and four small parameters are identified: thermal-physical, characterizing the degree of heat sensitivity of the layer material; geometric, characterizing the relative thickness of the thin-walled structure, and two small Biot numbers on the front surfaces of shells. A sequential recursion of dimensionless equations is carried out, at first, using the thermalphysical small parameter, then, small Biot numbers and, finally, geometrical small parameter. The first type of recursion allowed us to linearize the problem of heat conductivity, and on the basis of two latter types of recursion, the outer asymptotic expansion of solution to the problem of non-stationary heat conductivity of the layered anisotropic non-uniform shells and plates under boundary conditions of the II and III kind and small Biot numbers on the facial surfaces was built, taking into account heat sensitivity of the layer materials. The resulting two-dimensional boundary problems were analyzed, and asymptotic properties of solutions to the heat conductivity problem were studied. The physical explanation was given to some aspects of asymptotic temperature decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.