Abstract

We consider a one-dimensional system of Lennard-Jones nearest- and next-to-nearest-neighbour interactions. It is known that if a monotone parameterization is assumed then the limit of such a system can be interpreted as a Griffith fracture energy with an increasing condition on the jumps. In view of possible applications to a higher-dimensional setting, where an analogous parameterization does not always seem reasonable, we remove the monotonicity assumption and describe the limit as a Griffith fracture energy where the increasing condition on the jumps is removed and is substituted by an energy that accounts for changes in orientation (‘creases’). In addition, fracture may be generated by ‘macroscopic’ or ‘microscopic’ cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.