Abstract

An investigation was performed to obtain the behavior of composite sandwich beams in the presence of predetermined delaminations, due to disbonding between the faceplate and the less rigid core. An analytical model for predicting buckling and describing the postbuckling behavior of the beam was developed. Griffith's fracture energy release rate model was introduced to predict the stability of the delamination propagation under external loading. Parametric studies over a wide range of damage sizes, and composite facings were carried out to study the effects of these parameters on the overall behavior of the beams, as well as its damage tolerance. The results demonstrate that sandwich construction is very ‘sensitive’ to the presence of predetermined delaminatoins: premature buckling failure occurs at external loads, which are significantly lower than those corresponding to a ‘perfect’ sandwich beam. The limit load is obtained before delamination propagation takes place. In ‘imperfect’ beams with composite faceplates, the layup sequence affects significantly the load carrying capacity of the beam. It was also shown that the proposed model can be used to study the influences of predetermined delaminations in composite beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.