Abstract
In this work, we study the asymptotic characteristics of high‐order solitons for the focusing Kundu–Eckhaus (KE) equation. Based on the loop group theory, we construct the general Darboux transformation within the framework of Riemann–Hilbert problems to derive the general high‐order soliton solution. Using high‐order Bäcklund transformation, we derive the leading order term of the determinant solution to obtain the asymptotic representation for the high‐order soliton solution. Furthermore, this method is also extended to the construction of more general high‐order cases with multiple poles. We further find that if a soliton propagates along the logarithm characteristic curve, the high‐order soliton can be decomposed into individual solitons with the same amplitude and velocity. Finally, these solutions are theoretically and graphically analyzed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.