Abstract

Recent modeling of coffee bean roasting suggests that in the early stages of roasting, within each coffee bean, there are two emergent regions: a dried outer region and a saturated interior region. The two regions are separated by a transition layer (or, drying front). In this paper, we consider the asymptotic analysis of a recent multiphase model in order to gain a better understanding of its salient features. The model consists of a PDE system governing the thermal, moisture, and gas pressure profiles throughout the interior of the bean. By obtaining asymptotic expansions for these quantities in relevant limits of the physical parameters, we are able to determine the qualitative behavior of the outer and interior regions, as well as the dynamics of the drying front. Although a number of simplifications and scalings are used, we take care not to discard aspects of the model which are fundamental to the roasting process. Indeed, we find that for all of the asymptotic limits considered, our approximate solutions faithfully reproduce the qualitative features evident from numerical simulations of the full model. From these asymptotic results, we have a better qualitative understanding of the drying front (which is hard to resolve precisely in numerical simulations) and, hence, of the various mechanisms at play including heating, evaporation, and pressure changes. This qualitative understanding of solutions to the multiphase model is essential when creating more involved models that incorporate chemical reactions and solid mechanics effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.