Abstract
BackgroundThe recent increase in whooping cough incidence (primarily caused by Bordetella pertussis) presents a challenge to both public health practitioners and scientists trying to understand the mechanisms behind its resurgence. Three main hypotheses have been proposed to explain the resurgence: 1) waning of protective immunity from vaccination or natural infection over time, 2) evolution of B. pertussis to escape protective immunity, and 3) low vaccine coverage. Recent studies have suggested a fourth mechanism: asymptomatic transmission from individuals vaccinated with the currently used acellular B. pertussis vaccines.MethodsUsing wavelet analyses of B. pertussis incidence in the United States (US) and United Kingdom (UK) and a phylodynamic analysis of 36 clinical B. pertussis isolates from the US, we find evidence in support of asymptomatic transmission of B. pertussis. Next, we examine the clinical, public health, and epidemiological consequences of asymptomatic B. pertussis transmission using a mathematical model.ResultsWe find that: 1) the timing of changes in age-specific attack rates observed in the US and UK are consistent with asymptomatic transmission; 2) the phylodynamic analysis of the US sequences indicates more genetic diversity in the overall bacterial population than would be suggested by the observed number of infections, a pattern expected with asymptomatic transmission; 3) asymptomatic infections can bias assessments of vaccine efficacy based on observations of B. pertussis-free weeks; 4) asymptomatic transmission can account for the observed increase in B. pertussis incidence; and 5) vaccinating individuals in close contact with infants too young to receive the vaccine (“cocooning” unvaccinated children) may be ineffective.ConclusionsAlthough a clear role for the previously suggested mechanisms still exists, asymptomatic transmission is the most parsimonious explanation for many of the observations surrounding the resurgence of B. pertussis in the US and UK. These results have important implications for B. pertussis vaccination policy and present a complicated scenario for achieving herd immunity and B. pertussis eradication.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-015-0382-8) contains supplementary material, which is available to authorized users.
Highlights
The recent increase in whooping cough incidence presents a challenge to both public health practitioners and scientists trying to understand the mechanisms behind its resurgence
Our results suggest that: 1) there is strong empirical support for asymptomatic transmission from both the epidemiological and genomic data; 2) the presence of asymptomatic transmitters will bias estimates of vaccine efficacy derived from observations of stochastic fadeouts across cities; and 3) asymptomatic transmission provides the most parsimonious explanation for many of the observed patterns associated with current B. pertussis dynamics in the United States (US) and United Kingdom (UK)
The switch from wP to aP in the UK coincides with the return of cyclic patterns, which are similar to the approximately 4-year periodicity seen in the pre-vaccine era
Summary
The recent increase in whooping cough incidence (primarily caused by Bordetella pertussis) presents a challenge to both public health practitioners and scientists trying to understand the mechanisms behind its resurgence. Three main hypotheses have been proposed to explain the resurgence: 1) waning of protective immunity from vaccination or natural infection over time, 2) evolution of B. pertussis to escape protective immunity, and 3) low vaccine coverage. Many countries have seen a startling increase in the incidence of Bordetella pertussis, an important causative agent of whooping cough, over the past 20 years [1]. Two general hypotheses have been proposed to explain the rise in B. pertussis incidence: either vaccination coverage is too low, where individuals remain unvaccinated or unvaccinated susceptible individuals move into populations; or vaccinated individuals can still become infected [1, 4]. While vaccination coverage has likely played a role in increasing incidence, coverage has historically been high [1, 5], raising the likelihood that the resurgence is — at least in part — due to low vaccine effectiveness [6].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have