Abstract
A Callan-Gross-type relation between the structure functions determining dilepton production, which is satisfied by the basic O(1) and O(..cap alpha../sub s/) subprocesses of conventional QCD, is investigated in supersymmetric QCD (SQCD). It is found that SQCD subprocesses, mainly due to the presence of scalar quarks, strongly violate this relation, thus leading to sizable asymmetry effects in the angular distribution of dileptons. As an illustration, calculations are carried for p-barp..-->..l/sup +/l/sup -/+X at CERN collider and Fermilab Tevatron energies (..sqrt..s = 540 and 1600 GeV, respectively) and for pp..-->..l/sup +/l/sup -/+X at Tevatron energy; with scalar quarks of mass 20 GeV and light gluinos, asymmetries in the range of 20%--5% are found. The significance of the effects as a test of the short-distance structure of SQCD (valence part of the scalar-quark distribution) is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.