Abstract
The profiles of emission lines formed in the corona contain information on the dynamics and the heating of the hot plasma. Only recently has data with sufficiently high spectral resolution become available for investigating the details of the profiles of emission lines formed well above 10^6 K. These show enhanced emission in the line wings, which has not been understood yet. Line profiles of Fe XV formed at 2.5 MK acquired by the Extreme ultraviolet Imaging Spectrometer (EIS) onboard the Hinode solar space observatory are studied using multi Gaussian fits, with emphasis on the resulting line widths and Doppler shifts. In the major part of the active region, the spectra are best fit by a narrow line core and a broad minor component. The latter contributes some 10% to 20% to the total emission, is about a factor of 2 broader than the core, and shows strong blueshifts of up to 50 km/s. On average, the line width increases from the footpoints to the loop top for both components. A component with high upflow speeds can be found also in small restricted areas. The coronal structures consist of at least two classes that are not resolved spatially but only spectroscopically and that are associated with the line core and the minor component. Because of their huge line width and strong upflows, it is proposed that the major part of the heating and the mass supply to the corona is actually located in source regions of the minor component. The siphon flows and draining loops seen in the line core component are consistent with structures found in a 3D MHD coronal model. Despite the quite different appearance of the large active region corona and small network elements seen in transition region lines, both show similar line profile characteristics. This indicates that the same processes govern the heating and dynamics of the transition region and the corona.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have