Abstract

This paper proposes a mathematical method for the asymmetric buckling analysis of homogeneous and isotropic circular/annular plates under radial load based on the first-order shear deformation theory and nonlinear von Kármán relations. The buckling load is presented for different combinations of the free, clamped, and simply supported boundary conditions at the plate outer edges and different aspect ratios. The equilibrium equations which are five coupled nonlinear partial differential equations are extracted using the principle of virtual work and they are solved analytically using the perturbation technique. The stability equations which are a system of coupled linear partial differential equations with variable coefficients are obtained by employing the adjacent equilibrium criterion. The differential quadrature method is utilized to find the buckling load which is the eigenvalue of the stability equations. Also, the buckling load is examined using the classical plate theory as well. The sensitivity analysis investigates the effect of geometrical parameters on the buckling load. The results are compared with the obtained results from the classical plate theory, finite elements, and the results were reported in the other references.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.