Abstract

We propose a theoretical scheme to realize a two-dimensional (2D) diffraction grating in a four-level inverted-Y-type atomic system coupled by a standing-wave (SW) field and a Laguerre–Gaussian (LG) vortex field. Owing to asymmetric spatial modulation of the LG vortex field, the incident probe field can be lopsidedly diffracted into four domains and an asymmetric 2D electromagnetically induced grating is created. By adjusting the detunings of the probe field and the LG vortex field, the intensities of the LG vortex field and the coherent SW field, as well as the interaction length, the diffraction properties and efficiency, can be effectively manipulated. In addition, the effect of the azimuthal parameter on the Fraunhofer diffraction of the probe field is also discussed. This asymmetric 2D diffraction grating scheme may provide a versatile platform for designing quantum devices that require asymmetric light transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.