Abstract

In this paper, we study the Fraunhofer diffraction pattern in a four-level quantum dot nanostructure. The quantum dot interacts with two weak probe and signal laser fields and two strong coupling lights where one of them is a two-dimensional standing wave field. We study the Fraunhofer diffraction pattern of the transmitted probe light when the coherent driving light becomes plan wave or Laguerre Gaussian (LG) vortex light. We found that by controlling the relative phase of the applied lights and orbital angular momentum (OAM) of LG light, the Fraunhofer diffraction pattern can be controlled and the probe energy transfer from zero order to the higher orders, respectively. Moreover, we realized that by controlling the OAM number of the vortex light the asymmetric diffraction pattern is possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.