Abstract

The enzyme Coprinus peroxidase (CiP) was employed for the kinetic resolution of racemic hydroperoxides 1 and the asymmetric sulfoxidation of prochiral sulfides 4. Eleven hydroperoxides 1a-k were reduced by CiP and guaiacol as reductant under conditions of kinetic resolution with enantioselectivities of up to >98% for the (S)-hydroperoxide 1 and 90% for the (R)-alcohol 2. In the absence of a reductant, the hydroperoxide 1a afforded with CiP enantiomerically enriched hydroperoxide 1a (ee up to 54%) and alcohol 2a (ee up to 40%), as well as ketone 3a (which is also formed simultaneously in all other reactions) and molecular oxygen. Catalase activity was established for CiP with hydrogen peroxide. When aryl alkyl sulfides 4 were used as oxygen acceptors, three products, sulfoxides 5, alcohols 2, and hydroperoxides 1, were obtained, all in enantiomerically enriched form. The highest ee value (89%) was achieved for the sulfoxide derived from naphthyl methyl sulfide (4f). Thus, CiP may be utilized for the asymmetric synthesis of optically active hydroperoxides 1, alcohols 2, and sulfoxides 5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.