Abstract

The asymmetric material flow, severe plastic deformation and thermal cycle imposed on the base material during friction stir welding (FSW) result in unique microstructural development, which causes a gradient in local mechanical properties in the weld region. Micro-tensile and indentation testing were applied to determine the local mechanical properties in a friction stir welded joint. The local stress–strain curves exhibited a drastic change at the advancing side (AS) due to a steep gradient of mechanical properties. Finite Element Model (FEM) predictions of the tensile performance of the welded joints, based on the local mechanical properties measured by micro-tensile testing, were in very good agreement with the macro-tensile test data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.