Abstract
Fruit size and shape are controlled by genes expressed during the early developmental stages of fruit. Although the function of ASYMMETRIC LEAVES 2 (AS2) in promoting leaf adaxial cell fates has been well characterized in Arabidopsis thaliana, the molecular mechanisms conferring freshy fruit development as a spatial-temporal expression gene in tomato pericarp remain unclear. In the present study, we verified the transcription of SlAS2 and SlAS2L, two homologs of AS2, in the pericarp during early fruit development. Disruption of SlAS2 or SlAS2L caused a significant decrease in pericarp thickness as a result of a reduction in the number of pericarp cell layers and cell area, leading to smaller tomato fruit size, which revealed their critical roles in tomato fruit development. In addition, leaves and stamens exhibited severe morphological defects in slas2 and slas2l single mutants, as well as in the double mutants. These results demonstrated the redundant and pleiotropic functions of SlAS2 and SlAS2L in tomato fruit development. Yeast two-hybrid and split-luciferase complementation assays showed that both SlAS2 and SlAS2L physically interact with SlAS1. Molecular analyses further indicated that SlAS2 and SlAS2L regulate various downstream genes in leaf and fruit development, and that some genes participating in the regulation of cell division and cell differentiation in the tomato pericarp are affected by these genes. Our findings demonstrate that SlAS2 and SlAS2L are vital transcription factors required for tomato fruit development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have